... -
qme f0E rops o %/

FINAL REPORT: COMPUTING ENVIRONMENTS FOR DATA ANALYSIS

by
O
o
John Alan McDonald
€
-
e
|
£y
TECHNICAL REPORT No. 156
January 1989

Department of Statistics, GN-22
Univérsity of Washington
Seattle, Washington 98195 USA
WE‘T’GW??‘?WW[

Approved for public release;
Diztribution Unlimited

Final Report
(1 Jan 1986 through 31 Dec 1988) /}//
for
ONR Contract N00014-86-K-0069

Computing Environments for Data Analysis

JOHN ALAN McDONALD
Dept. of Statistics, University of Washington

January 3, 1989

All work mentioned here was also supported (approximately 50%) by the
Nonparametric methods in multivariate analysis project [July 1, 1985—July
29, 1988] funded by the Department of Energy Grant FG0685-ER25006.

1 Research Overview

The core of my proposal to ONR was the following sentence: “The concrete
goal of the proposed research is the design and implementation of a modern
environment for interactive data analysis.” The extent to which I have
succeeded in this goal is represented by the current state of a system called
Arizona, which is described in detail in [13, 12]. Arizona is the latest in a
series of “systems” which have been the focus of my research for the past
three years. Each of the systems before Arizona investigated a particular
aspect of a comprehensive data analysis environment; the purpose of Arizona
is to put them together. In brief, the systems were:

e Antelope: experimentation with object-oriented databases and constraint-
based interactive graphics.

e Fossil: iaterfaces to traditional (Fortran) scientific subroutine libraries.

¢ Cactus: a mathematician’s numerical linear algebra package, using
object-oriented programming to provide a higher level of abstraction
than Linpack[6].

1.1 Arizona

Arizona is intended to be a portable, public-domain collection of tools sup-
porting scientific computing, itative graphics, and data analysis, im-
plemented in Common Lisp{22, 21, 7} and CLOS (the Common Lisp Object

System)/[.‘}, 10]) Although thereis substantial implementation of some of the e

modules described below, more years of work are required before it will ma- ’
ture and stabilize to the point of robust production-quality codey Arizona
is intended primarily as a research vehicle; however, I hope that i

embodied in its design are of interest in themselves and of use in future
scientific computing and data analysis systems (eg. a “New New S[2]).

Arizona evolved out of the Fossil meeting discussed below. The code in
the current version of Arizona is perhaps 80% my work, with the remainder
contributed by John Michalak, Michael Sannella, Werner Stuetzle, Robert
Gentleman, Catherine Hurley, and Andrew Bruce of the U. of Washington,
Jan Pedersen of Stanford University and Xerox PARC, Steve Peters of MIT,
UC Berkeley, and Apple Computers, and Wayne Oldford of MIT and U. of
Waterloo. In addition, code from Arizona has been distributed to and is
the subject of continuing collaboration with researchers at U. Minnesota,
Carnegie Mellon, Bell Labs, and Bellcore.

Discussion of the philosophy underlying Arizona can be found in [14, 15,
11, 12, 16, 23]. Briefly, the design is motivated by the belief that an ideal
system for scientific computing and data analysis should have:

¢ One language that can be used for both line-by-line interaction and
defining compiled procedures.

e Minimal overhead in adding new compiled procedures (or other defi-
nitions).

P

>

j
g []

/" .

> Ty

(VIS
s = SN

o language that supports a wide variety of abstractions and the defi-

nition of new kinds of abstra.ctions)/

C&Prdgramming tools (editor, debugger, browsers, metering and moni-

toring tools).
Automa./tipaoglory management (dynamic space allocation and garbage

_cellection).

Portability over many types of workstations and operating systems. “o I 7=+

A community of users and developers.

Access to traditional Fortran scientific subroutine libraries or equiva-
lents.

A representation of scientific data directly in the data structures of
the language.

Comprehensive numerical, graphical, and statistical functionality.
Device independent static output graphics.

Window based interactive graphics.

Support for efficient and concurrent access to large databases.

Documentation and tutorials, both paper and on-line.

The first nine points (through “access to Fortran™) come for free with stan-
dard Common Lisp environments. The remaining six are the research as-

pects

of Arizona.

Arizona is divided into a2 number of modules, with limited interdepen-
dencies, to permit individual modules to stabilize and be “released” before
the whole system is complete.

The modules are divided into two groups: a numericai, quantitative
kernel and an interactive, window-based, scientific graphics part.

“reo g4 ('ws.‘
4y

1.1.1 A quantitative kernel

The non-graphical quantitative kernel is more developed at present, because
it can be implemented in an efficient, portable way using existing standards
for Common Lisp and CLOS. The quantitative xernel consists of:

o Basic Math, which requires Common Lisp,

Collections, which requires Common Lisp and CLOS,

e Linear Algebra, which requires Basic Math and Collections (sometimes
this module is refered to as Cactus),

Probability, which requires Linear Algebra,

o Database, which requires Collections, and

Statistics, which requires Database and Probability.

The contents of these modules are described in {13). The Linear Algebr:.
module is the Cactus system discussed below.

1.1.2 Static output-only graphics

Since [13) was written, static, output-only graphics has been added to Ari-
zona using two modules, which are based on the Xerox Lisp PLOT package
designed and written by Jan Pedersen[17]:

o 2D-Graphics, which is essentially a device driver for various Common
Lisps and displays. It defines a Graphics-Canvas abstraction which
provides the ability to draw points, lines, polylines, bitmaps, char-
acters, strings, etc., in device coordinates. Implementations exist for
Xerox Common Lisp, Symbolics Genera Windows, and Coral Com-
mon Lisp (on the Apple Mac II}. Implementations for X windows and
Postscript printers are planned for the near future.

o 2D-Plot, which provides higher-level scientific graphics, such as scat-
terplots, histograms, boxplots, etc. The basic abstraction is the Plot,
which is a hierarchy of Plot-Objects (points, curves, strings, etc.) that
are defined in the user or world coordinate system. A Plot can be
drawn on any available Graphics-Canvas (eg. a window or a printer);
the transformation from world to device coordinates is hidden from
the user. It is fairly easy for the user to define new types of plots by
creating new nierarchies of Plot-Objects.

1.1.3 Interactive, Motion Graphics

The current design for interactive graphics is fairly tentative. Implementa-
tion of a portable scientific graphics toolkit requires 2 standardized interface
between Common Lisp/CLOS and the large variety of proprietary or pro-
posed standard window systems for workstations and personal computers
(eg. Symbolics Genera [25], NeWS[24], X[20], etc.). This standard (some-
times called Common Windows) is the subject of intense activity in the
Common Lisp commurity[9, 18]. 2D-Graphics/2D-Plot is our current best
approximation; it will be modified or will wither away as a true Common
Windows standard emerges.

The parts of 2D-Graphics and 2D-Plot that are not specific to a particu-
lar display device were implemented in pure Common Lisp, for portablility.
Since the CLOS standard is now more or less fixed, we will convert them to
use it, as a first step in supporting interactive graphics.

I have identified three modules in a future interactive graphics subsys-

tem:

¢ Constraints, which requires Common Lisp and CLOS. (This module
might very well be part of the non-graphical kernel, but most of the
applications we have in mind at present are in graphics.)

o Quantitative Graphics, which requires Common Windows, Collections,
Constraints, and Linear Algebra.

o Data Analysis Graphics, which requires Quantitative Graphics and
Statistics

The contents of these modules are described in [13].

1.2 Cactus

The underlying premise of much of my research is that quantitative, scientific
computing needs and deserves good programming languages and program-
ming environments—as much as artificial intelligence. The Cactus system
shows how straightforward application of object-oriented design to stan-
dard algorithms in numerical analysis yields immense improvement in clar-
ity, without sacrificing speed or numerical accuracy.

Object-oriented programming is sometimes said to only be useful for
graphics and user interface and, perhaps. knowledge representation and
database management. Even Lisp machine manufacturers seem to think
that Fortran is somehow superior for traditional, quantitative scientific com-
puting. When numerical software is written in Lisp (eg. [19]), the author
usually adopts a Fortran or Algol style and neglects the potential for de-
signing more appropriate abstractions{1].

Cactus is based on a collection of linear transformation classes and appro-
priate generic operations. This level of abstraction greatly simplifies many
algorithms in numerical linear algebra. Traditional linear algebra systems
(Linpack[6], APL) operate at the level of arrays and confound the details of
where data is kept with how it is meant to be used.

1.3 Fossil

I organized a small meeting in Seattle in November, 1986, which was at-
tended by:

o Keith Kerr, Applied Physics Laboratory, U. Washington

John McDonald, Statistics, U. Washington

John Michalak, Statistics, U. Washington
Wayne Oldford, U. Waterloo

e Jan Pedersen, Xerox and Stanford

Stephen C. Peters, U.C. Berkeley

e Werner Stuet:zle, Statistics, U. Washington

o Alan Wilks, AT&T Bell Labs.

The purpose of the meeting was to collect together a group of people
interested in statistical computing in Lisp. We intended to collaborate in an
informal joint project called Fossii. The primary goal of Fossil was to build
up a portable library of scientific subroutines—statistical, numerical, and
graphics functions—that can be shared by people working in any implemen-
tation of Common Lisp. This wonld eliminate a present tendency towards
re-inventing the wheel among statistics researchers using Common Lisp. To
be able to share software, we needed to agree on a number of things, in
particular, consistant data structures and function libraries.

The most direct, concrete result of the Fossil meeting was Polish-Fortran,
a portable Common Lisp program that translates Fortran source code into
a Lisp-like syntax (polish notation). A set of portable Common Lisp macros
are provided that simulate Fortran semantics. Although some Lisp envi-
ronments provide mechanisms for calling Fortran subroutines, these foreign
function interfaces are not standardized and, therefore, code that relies on
them is not portable. In addition, the translator can and has been used
as a first step in translating Fortran into readable, modifiable, extensible
Common Lisp code. This was done for some of the special functions in the
Basic Math module in Arizona.

1.4 Antelope

One part of my research was devoted to two related, “high level” topics:
object-oriented representation of statistical data and Object-viewing, a con-
straint approach to data analysis graphics. The result of this work is an
experimental system called Antelope, which is described in [11].

An important part of Antelope was the Antelope language. I extended
the object-oriented Flavors language provided on the Symbolics, because
it did have all the properties necessary to support the statistical object-
oriented databases or constraint-based graphics. The Antelope language
is now unnecessary, because CLOS supplies some of the features that were

-1

missing in Flavors, and provides a systematic and portable way to add others
via the meta-object protocol.

In Antelope, statistical data is represented by objects, the primitive data
structures in the object-oriented Antelope language. The choice to represent
statistical data directly in the most primitive data structures of the program-
ming language, rather than adding a more elaborate statistical database,
is both minimal and harmonious with the spirit of base environment. The
relevant point here is that statistical data objects do not differ in any funda-
mental way from other objects in the programming environment. Statistical
tools can be applied to any objects (for example, the windows on the screen
or the processes managed by the scheduler); the regular programming tools
(for example. the editor or the inspector) can be used on statistical objects.

The constraint paradigm for graphics is used to support Object-viewing,
which means that windows are thought of as views of the current state of
objects in the environment. For example, scatterplot windows are graphical
views of data sets; editor windows are text views of procedure objects. The
key point is that windows automatically update their appearance whenever
the objects they show change state. If a record object has a slot called color,
and the value of color is changed from red to green, then all windows that
show some representation of that particular record will change the color
from red to green. The implementor of code which modifies a record object
does not have to worry about whether the record is shown in one or more
windows and that these windows need to be updated whenever the record
changes.

In contrast, most existing window systems treat windows as virtual paper
and their contents as virtual ink. Drawing on a window makes a mark
that remains until it is explicitly erased and re-drawn. One motivation
for a systematic implementation of object-viewing is the belief that most
erasing and redrawing of windows is done to reflect a change of state of
some object in the environment. Thus common tasks in interactive graphics
are simplified if erasing and redrawing can be done automatically.

Object-viewing is best thought of as imposing a constraint between the
abstract object in the programming environment and its visible representa-
tion on the screen. A good constraint language gives the programmer clear,
simple ways to express constraints and also encourages a modular design—

by separating the description and implementation of constraints from the
implementation of the internal details of the constrained objects.

In a little more detail, the object-viewing programming model consists
of:

o A number of base objects residing in the programming environment’s
address space, like a record in a statistical database or the definition
of a Lisp function.

o Visible representations of base objects in windows. Abstractly, the
visible representation corresponds to something like a node of a hier-
archical display tree.

o A viewing filter (or viewing pipeline [5]) that computes the state of the
visible representation from the state of the base object. An obvious
example of a viewing filter is the usual 3-d viewing transformation,
which might be used is a rotating scatterplot. A less obvious example
is a pretty-printer that is applied to the definition of a Lisp function
before it is displayed in an editor window.

e A constraint that causes the visible representation to be re-computed
(and re-drawn) whenever the state of the base object changes.

Further applications of the constraint paradigm to statistical graphics
are described in [4, 5, 8).

2 Professional Activity

2.1 Refereed Publications:

1987 Computing Environments for Data Analysis, Part III: Programming
Environments, with Jan Pedersen, SIAM J. Scientific and Statistical
Computing 9 (2): 380-400.

1988 Smoothing with Split Linear Fits, with Art Owen, Technometrics 28
(3): 195-208.

1988 Periodic Smoothing of Time Series, SIAM J. Scientific and Statistical
Computing 7 (2): 665-688.

2.2 Invited Papers in Conference Proceedings:

1988 An outline of Arizona: a portable Lisp-based system for data analysis,
at Computer Science and Statistics, the 20th Symposium on the In-
terface, Reston, Va., April. (Also Tech Rept 131, Dept. of Statistics,
U. of Washington)

1986 Antelope: data analysis with object-oriented programming and con-
straints, Proc. of the 1986 Joint Statistical Meetings, Stat. Comp. Sect.
(also Tech Rept 89, Dept. of Statistics, U. of Washington).

2.3 Other Publications:

1988 Elements of a viewing pipeline for data analysis, with Andreas Buja,
Daniel Asimov, and Catherine Hurley, in Dynamic Graphics for Statis-
tics, Cleveland, W.S., and McGill, M.E., eds. (1988) Wadsworth, Pa-
cific Grove, Ca.

1988 Interactive Graphics for Data Analysis, (Ph.D. Thesis) Available as
Tech. Report Orion# 11, Dept. of Statistics, Stanford University.
Also in Dynamic Graphics for Statistics, Cleveland, W.S., and McGill,
M.E., eds. (1988) Wadswoith, Pacific Grove, Ca.

1987 Object-oriented design in numerical linear algebra, Technical Report
109, Dept. of Statistics, U. of Washington.

2.4 Invited Presentations:

1988 Analysis of fish abundance in the Bering sea: a case study in the use
of graphical methods, with Werner Stuetzle, at the Joint Statistical
Meetings in New Orleans in August 1988,

1988 An outline of Arizona: a portable Lisp-based system for data analy-
sis, at Computer Science and Statistics, the 20th Symposium on the
Interface, Reston, Va., April.

1987 Object-oriented design in numerical linear algebra, at Computer Sci-
ence and Statistics, the 19th Symposium on the Interface, Philadel-
phia, March.

10

1988 Antelope: data analysis with object-oriented programming and con-
straints, Proc. of the 1986 Joint Statistical Meetings, Stat. Comp. Sect.

1988 The object-vtiewer paradigm for data analysis graphics at the AMS
meeting on Data Analysis and Graphics in Santa Cruz in June.

1988 The object-viewer paradigm for data analysis graphics at the session
on Graphical Components for Statistical Workstations of the National
Computer Graphics Association meeting in May.

I have given invited seminars in the Statistics Dept., Computer Science
Dept.. the Applied Physics Lak at the U. of Washington, at Stanford, MIT,
U. of Waterloo, and Florida State, and in research labs at AT&T Bell Labs,
Bellcore, Schlumberger-Doll Research, Schlumberger Palo Alto, and Xerox
PARC.

In addition, the ONR Young Investigator Award has supported my at-
tendance at a number of conferences where I did not give presentations: the
Common Lisp Object System Workshop at Xerox PARC in October 1988,
the 2nd OOPSLA (Object-Oriented Programming: Systems, Languages,
and Applications) meeting in Orlando in October 1987, the Symbolics Na-
tional Users Group meeting in Seattle in July 1987, the AAAJ meeting in
Seattle in July 1987, the Joint Statistical Meetings in San Francisco in Au-
gust 1987, and the 1st OOPSLA meeting in Portland in October 1986.

2.5 Graduate Students

e Ph.D. committee for Catherine Hurley. Degree received Fall 1987.
Thesis title: The Data Viewer: A program for graphical data analysis.

e Ph.D. committee for Jeff Banfield. Degree received spring 1988. Thesis
topic: Clustering and image processing with applications to remote
sensing of sea ice.

e Ph.D. committee for Pat Burns. Degree received in Jan 1988. Thesis
topic: Resistant Fits of Two-way tables.

e Ph.D. committee for John Michalak. Degree to be received spring
1989. Thesis topic: Interactive methods for viewing hierarchical struc-
tures in data analysis.

11

e Ph.D. committee for Charlie Geyer. Thesis topic: Constrained Mari-
mum Likelihood for ezponential families.

In addition, I informally advise other Statistics, Biostatistics, and Com-
puter Science Ph.D. students who use our Lisp machines in their research,
including Deborah Donnell, Andrew Bruce, Robert Gentleman, Mike Kahn,
Jorean Sicks, Steve McKinney (Biostat), Kevin Anderson (Biostat), Jed
Dennis, Suzanne Weghorst (CS), and Michael Sannella (CS).

References

(1] H. Abelson, G. Sussman, and J. Sussman. Structure and Interpretation
of Computer Programs. MIT Press, Cambridge, Mass., 1985.

(2] R.A. Becker, J.M. Chambers, and A.R. Wilks. The New S Language.
Wadsworth and Brooks/Cole, Pacific Grove, CA, 1988.

[3] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S. Keene, G. Kiczales, and
D.A. Moon. Common Lisp Object System Specification X3J18 Docu-
ment 88-002R, 1988.

(4] A. Buja, C. Hurley, and J.A. McDonald. A data viewer for multivariate
data. In Computer Science and Statistics: Proc. 18th Symp. on the
Interface, Washington, D.C., 1987. ASA.

(5] A. Buja, C. Hurley, and J.A. McDonald. Elements of a viewing pipeline
for data analysis. In W.S. Cleveland and M.E. McGill, editors, Dynamic
Graphics for Statistics. Wadsworth and Brooks/Cole, Belmont, Ca.,
1987.

(6] J.J. Dongarra, C.B. Moler, J.R. Bunch, and G.W. Stewart. LINPACK
Users’ Guide. SIAM, Philiadelphia, 1979.

(7] Franz, Inc. Common Lisp: the reference. Addison-Wesley, Reading,
Mass., 1988.

(8] C. Hurley. The data viewer: a program for graphical data analysis. PhD
thesis, Dept. of Statistics, U. of Washington, 1987.

12

(9] Intellicorp. Intellicorp Common Windows Manual. 1975 El Camino
Real West, Mountain View, Ca 94040-2216, 1986.

(10) Sonya E. Keene. Object-oriented programming in Common Lisp: a
programmer’s guide to CLOS. Symbolics Press and Addison-Wesley,
Reading, Mass., 1388,

(11} J.A. McDonald. Antelope: data analysis with object-oriented program-
ming and constraints. In Proc. of the 1986 Joint Statistical Meetings,
Stat. Comp. Sect., 1986. Also Tech Rept 89, Dept. of Statistics, U. of
Washington.

[12] J.A. McDonald. Object-oriented design in numerical linear algebra.
Technical Report 109, Dept. of Statistics, U. of Washington, 1987,

{13] J.A. McDonald. An outline of arizona. Technical Report 131, Dept. of
Statistics, U. of Washington, 1988.

[14} J.A. McDonald and J.O. Pedersen. Computing environments for data
analysis I: Introduction. SISSC, 6(4):1004-1012, 1985.

[15] J.A. McDonald and J.O. Pedersen. Computing environments for data
analysis II: Hardware. SISSC, 6(4):1013-1021, 1985.

{16] J.A. McDonald and J.O. Pedersen. Computing environments for data
analysis III: Programming environments. SISSC, 9(2):380-400, 1988.

[17] Jan Otto Pedersen. IDL—A statistical programming environment. PhD
thesis, Dept. of Statistics, Stanford University, 1989.

[18] R.B. Rao. Towards interoperability and extensibility in window en-
vironments via object-oriented programming. Master’s thesis, MIT
EECS, 1987.

[19] G. Roylance. Some scientific subroutines in lisp. Technical Report
Memo 774, MIT Al Lab, 1984.

{20] R.W. Scheifler and J. Gettys. The X window system. ACM TOG,
5(2):79-109, 1986.

[21] Rosemary Simpson. Common Lisp: the indez. Coral Software, Inc. and
Franz, Inc., 707 Laurel St., Menlo Park, Ca. 94025, 1987.

[22] G.L. Steele. Common Lisp, The Language. Digital Press, 1984.

13

[23] W. Stuetzle. Plot windows. JASA, 82(398):466-475, 1987.

[24]) Sun Micresystems, Inc. NeWS Manual. Sun Microsystems, Inc., 2550
Garcia Ave, Mountain View, Ca. 94043, 1987. Part No. 800-1632-10.

(25] J. Walker, D.A. Moon, D.L. Weinreb, and M. Macmahon. The Sym-

bolics Genera programming environment. [EEE Software, 4(6):36-45,
1987.

14

